Comments on "Dual methods for nonconvex spectrum optimization of multicarrier systems"
نویسندگان
چکیده
Yu and Liu’s strong duality theorem under the time-sharing property requires the Slater condition to hold for the considered general nonconvex problem, what is satisfied for the specific application. We further extend the scope of the theorem under Ky Fan convexity which is slightly weaker than Yu&Lui’s time-sharing property.
منابع مشابه
QoS-constrained Energy Minimization in Multiuser Multicarrier Systems
In this paper the QoS-constrained resource allocation problem in multicarrier systems is considered. Within the established crosslayer framework, parameters for subchannel assignment, adaptive modulation and coding, and ARQ/HARQ protocols are jointly optimized. Instead of the conventional transmit power minimization, the total energy consumption for the successful transmissions of all informati...
متن کاملNonconvex Optimization for Communication Systems
Convex optimization has provided both a powerful tool and an intriguing mentality to the analysis and design of communication systems over the last few years. A main challenge today is on nonconvex problems in these application. This paper presents an overview of some of the important nonconvex optimization problems in point-to-point and networked communication systems. Three typical applicatio...
متن کاملCanonical Duality Theory: Connections between nonconvex mechanics and global optimization
This paper presents a comprehensive review and some new developments on canonical duality theory for nonconvex systems. Based on a tri-canonical form for quadratic minimization problems, an insightful relation between canonical dual transformations and nonlinear (or extended) Lagrange multiplier methods is presented. Connections between complementary variational principles in nonconvex mechanic...
متن کاملAn Efficient Neurodynamic Scheme for Solving a Class of Nonconvex Nonlinear Optimization Problems
By p-power (or partial p-power) transformation, the Lagrangian function in nonconvex optimization problem becomes locally convex. In this paper, we present a neural network based on an NCP function for solving the nonconvex optimization problem. An important feature of this neural network is the one-to-one correspondence between its equilibria and KKT points of the nonconvex optimizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Letters
دوره 2 شماره
صفحات -
تاریخ انتشار 2008